

|  |  |  |  |
| :---: | :---: | :---: | :---: |
| - Start at the biggest number and count on to add <br> - Know addition and subtraction facts for all numbers to 10. <br> - Add one digit and two-digit numbers to 20 , including zero. | cuncoo-0000 <br> Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer. |  | $5+8=13$ <br> I put 8 in my head and count five more, $9,10,11$, 12, 13. <br> Place the larger number in your head and count on the smaller number to find your answer. |
| - Regroup to make 10 <br> - Know all addition and subtraction facts for all numbers to 20. <br> - Show that addition of two numbers can be done in any order (commutative) | $9+3=12$ $6+5=11$ <br> Start with the larger number and use the smaller number to make 10. | Use pictures or a number line. Regroup or partition the smaller number to make 10. $3+9=$ | $7+4=11$ <br> If I am at 7, how many more do I need to make 10. How many more do I need to add on now? |

- Add three 1-digit numbers

Following on from making 10, make 10 with 2 of the digits (if possible) then add on the third digit.


## $4+7+6=17$

Put 4 and 6 together to make 10. Add on 7

- Add two 2-digit numbers
- Use addition facts to 20 fluently and derive and use related facts up to 100.
- Add any two 2digit numbers by counting on in 10 s and 1 s or by using partitioning
- Solve addition problems in the context of measures, coins
and recombine
$42+21$


Add the tens together and the ones together

Add together three groups of objects. Draw a picture to recombine the groups of 10 .

$10+2=12$

$$
\begin{aligned}
(4++7+6 & =10+7 \\
10 & =17
\end{aligned}
$$

Combine the two numbers that make 10 and then add on the third number.

42+21=
$40+20=60$
$2+1=3$
$60+3=63$

So $42+21=63$

Use an empty numberline. Start from the largest number and then count on in tens and ones to add the smaller number.
Or use coins to partition into tens and ones

| Subtraction |  |  |  |
| :---: | :---: | :---: | :---: |
| Strategies | Concrete | Pictorial | Abstract |
| - Taking away ones <br> - Know 1 less than any number up to 10 | Use physical objects, counters, cubes etc. To show how objects can be taken away. <br> John has 6 sweets. He eats 2. How many are left? <br> $6-2=4$ | Line up objects along a number track and remove <br> (1)2345678910 <br> Use number tracks to find 'one less than'. <br> Draw jottings to represent the numbers. Cross out the number to be taken away. <br> I have 9 cakes. I eat 2. How many are left? 9-2=7 | I know 1 less than 5 is 4. $\begin{aligned} & 8-2=6 \\ & 10-\square=9 \end{aligned}$ $10-5=$ |
| - Subtract one digit numbers by counting | Count back on a bead string or as you remove objects | Count back on a number line or number track | $13-4$ <br> Put 13 in your head and count back 4. What |



| relationship between addition and subtraction. <br> - Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and missing number problems. | If 10 is the whole and 6 is one of the parts. What is the other part? $10-6=$ | $6-2=$ <br> If 6 is the whole and one part is 2 . What is the other part? | $10-\square=5$ |
| :---: | :---: | :---: | :---: |
| - Subtract a 2-digit number from another 2-digit number <br> - Subtract by counting back on a number line, counting back in tens and ones. <br> - Subtract by partitioning the number into tens and ones. | Use base 10 to make the bigger number and then take the smaller number away. <br> 57-23 | Draw jottings to represent base 10. $111515$ | $\begin{aligned} & \hline 57-23 \\ & 57-20=37 \\ & 37-3=34 \end{aligned}$ |



\begin{tabular}{|c|c|c|c|}
\hline \&  \& \& \\
\hline \multicolumn{4}{|l|}{Multiplication} \\
\hline Strategies \& Concrete \& Pictorial \& Abstract \\
\hline - Doubling \& \begin{tabular}{l}
Use practical activities to show how to double a number \\
double 4 is 8 \(4 \times 2=8\)
\end{tabular} \& \begin{tabular}{l}
Draw pictures to show how to double a number \\
Double 4 is 8

$\square$
$\square$
$\square$
$\square$

 \& 

I know double 4 is 8 because $4+4$ is 8 . <br>
Partition larger numbers and double the tens and then the ones
\end{tabular} <br>

\hline
\end{tabular}



|  | $\begin{aligned} & 2+2+2+2+2=10 \\ & 2 \times 5=10 \end{aligned}$ $\begin{aligned} & 5+5+5=15 \\ & 5 \times 3=15 \end{aligned}$ |  |  |
| :---: | :---: | :---: | :---: |
| - Arrays <br> - Recognise and use the inverse relationship between multiplication and division in calculations. <br> - Show that multiplication of two numbers can be done in any order (commutative) | Create arrays using counters/ cubes/ peg boards to show multiplication <br> $5 \times 4=20 \quad 5$ taken 4 times is $205+5+5+5=20$ <br> $4 \times 5=20 \quad 4$ taken 5 times is $204+4+4+4+4=20$ | Draw arrays in different rotations to find commutative multiplication sentences. | Use an array to write multiplication sentences and reinforce repeated addition. $\begin{aligned} & 5+5+5=15 \\ & 3+3+3+3+3=15 \\ & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}$ |


|  | $3 \times 5=15 \quad 3$ taken 5 times is 15 . <br> $5 \times 3=15 \quad 5$ taken 3 times is 15 . |  |  |
| :---: | :---: | :---: | :---: |
| Division |  |  |  |
| Strategies | Concrete | Pictorial | Abstract |
| - Find half by sharing objects into 2 equal groups | 8 | $\frac{1}{2} \text { of } 8$ | Know half of even numbers. <br> I know half of 12 is 6 because 6+6=12. |
| - Recognise odd numbers as numbers which cannot be shared into 2 equal groups. |  |  | Find half of a larger number by partitioning into tens and ones and finding half of the tens and half of the ones. |
| - Recognise even numbers as numbers which can be shared into 2 equal groups. | Use counters and objects to share into 2 equal groups. | Children can find half by drawing 2 groups and sharing the number equally. |  |

(

| Sharing objects |
| :--- |
| into equal groups |
| Recognise that |
| division is not |
| commutative |
| and cannot be |
| done in any |
| order. |

group, then 2 objects in each group, until they
are shared equally.

| - Division as grouping | Divide quantities into equal groups. <br> Use cubes, counters, objects or place value counters to aid understanding. $10 \div 2=$ <br> How many groups of 2 are there in 10 ? | Use a number line to show jumps in groups. The number of jumps equals the number of groups. | A teacher needs 30 apples. There are 5 apples in each bag. How many bags of apples will she need? $30 \div 5=$ |
| :---: | :---: | :---: | :---: |
| - Division within arrays <br> - Recognise and use the inverse relationship between multiplication and division in calculations. | Link division to multiplication by creating an array and thinking about the number sentences that can be created. $\begin{aligned} & 15 \div 3=5 \\ & 15 \div 5=3 \\ & 3 \times 5=15 \\ & 5 \times 3=15 \end{aligned}$ |  | Find the inverse of multiplication and division sentences by creating four linking number sentences. $\begin{array}{r} -4 \times 5=20 \\ 5 \times 4=20 \\ 20 \div 5=4 \\ 20 \div 4=5 \end{array}$ |

